Object that can be treated as both a string and number
is Any
Cool
, also known as the Convenient OO Loop, is a base class employed by a number of built-in classes whose instances can be meaningfully coerced to a string and a number. For example, an Array can be used in mathematical operations, where its numerical representation is the number of elements it contains. At the same time, it can be concatenated to a string, where its stringy representation is all of its elements joined by a space. Because Array is Cool
, the appropriate coercion happens automatically.
Methods in Cool
coerce the invocant to a more specific type, and then call the same method on that type. For example both Int and Str inherit from Cool
, and calling method substr
on an Int
converts the integer to Str
first.
123.substr(1, 1); # '2', same as 123.Str.substr(1, 1)
The following built-in types inherit from Cool
: Array Bool Complex Cool Duration Map FatRat Hash Instant Int List Match Nil Num Range Seq Stash Str.
The following table summarizes the methods that Cool
provides, and what type they coerce to:
method | coercion type |
---|---|
abs | Numeric |
conj | Numeric |
sqrt | Numeric |
sign | Real |
rand | Numeric |
sin | Numeric |
asin | Numeric |
cos | Numeric |
acos | Numeric |
tan | Numeric |
tanh | Numeric |
atan | Numeric |
atan2 | Numeric |
atanh | Numeric |
sec | Numeric |
asec | Numeric |
cosec | Numeric |
acosec | Numeric |
cotan | Numeric |
cotanh | Numeric |
acotan | Numeric |
sinh | Numeric |
asinh | Numeric |
cosh | Numeric |
acosh | Numeric |
sech | Numeric |
asech | Numeric |
cosech | Numeric |
acosech | Numeric |
acotanh | Numeric |
cis | Numeric |
log | Numeric |
exp | Numeric |
roots | Numeric |
log10 | Numeric |
log2 | Numeric |
unpolar | Numeric |
round | Numeric |
floor | Numeric |
ceiling | Numeric |
truncate | Numeric |
chr | Int |
ord | Str |
chars | Str |
fmt | Str |
uniname | Str |
uninames | Seq |
unival | Str |
univals | Str |
uniprop | Str |
unimatch | Str |
uc | Str |
lc | Str |
fc | Str |
tc | Str |
tclc | Str |
flip | Str |
trans | Str |
contains | Str |
index | Str |
rindex | Str |
ords | Str |
split | Str |
match | Str |
comb | Str |
subst | Str |
sprintf | Str |
printf | Str |
samecase | Str |
trim | Str |
trim-leading | Str |
trim-trailing | Str |
EVAL | Str |
chomp | Str |
chop | Str |
codes | Str |
Complex | Numeric |
FatRat | Numeric |
Int | Numeric |
Num | Numeric |
Rat | Numeric |
Real | Numeric |
UInt | Numeric |
sub abs(Numeric() )method abs()
Coerces the invocant (or in the sub form, the argument) to Numeric and returns the absolute value (that is, a non-negative number).
say (-2).abs; # OUTPUT: «2»say abs "6+8i"; # OUTPUT: «10»
method conj()
Coerces the invocant to Numeric and returns the Complex conjugate (that is, the number with the sign of the imaginary part negated).
say (1+2i).conj; # OUTPUT: «1-2i»
method EVAL(*)
It calls the subroutine form with the invocant as the first argument, $code
, passing along named args, if any.
sub sqrt(Numeric(Cool) )method sqrt()
Coerces the invocant to Numeric (or in the sub form, the argument) and returns the square root, that is, a non-negative number that, when multiplied with itself, produces the original number.
say 4.sqrt; # OUTPUT: «2»say sqrt(2); # OUTPUT: «1.4142135623731»
method sign()
Coerces the invocant to Numeric and returns its sign, that is, 0 if the number is 0, 1 for positive and -1 for negative values.
say 6.sign; # OUTPUT: «1»say (-6).sign; # OUTPUT: «-1»say "0".sign; # OUTPUT: «0»
method rand()
Coerces the invocant to Num and returns a pseudo-random value between zero and the number.
say 1e5.rand; # OUTPUT: «33128.495184283»
sub sin(Numeric(Cool))method sin()
Coerces the invocant (or in the sub form, the argument) to Numeric, interprets it as radians, returns its sine.
say sin(0); # OUTPUT: «0»say sin(pi/4); # OUTPUT: «0.707106781186547»say sin(pi/2); # OUTPUT: «1»
Note that Raku is no computer algebra system, so sin(pi)
typically does not produce an exact 0, but rather a very small Num.
sub asin(Numeric(Cool))method asin()
Coerces the invocant (or in the sub form, the argument) to Numeric, and returns its arc-sine in radians.
say 0.1.asin; # OUTPUT: «0.10016742116156»say asin(0.1); # OUTPUT: «0.10016742116156»
sub cos(Numeric(Cool))method cos()
Coerces the invocant (or in sub form, the argument) to Numeric, interprets it as radians, returns its cosine.
say 0.cos; # OUTPUT: «1»say pi.cos; # OUTPUT: «-1»say cos(pi/2); # OUTPUT: «6.12323399573677e-17»
sub acos(Numeric(Cool))method acos()
Coerces the invocant (or in sub form, the argument) to Numeric, and returns its arc-sine in radians.
say 1.acos; # OUTPUT: «0»say acos(-1); # OUTPUT: «3.14159265358979»
sub tan(Numeric(Cool))method tan()
Coerces the invocant (or in sub form, the argument) to Numeric, interprets it as radians, returns its tangent.
say tan(3); # OUTPUT: «-0.142546543074278»say 3.tan; # OUTPUT: «-0.142546543074278»
sub atan(Numeric(Cool))method atan()
Coerces the invocant (or in sub form, the argument) to Numeric, and returns its arc-sine in radians.
say atan(3); # OUTPUT: «1.24904577239825»say 3.atan; # OUTPUT: «1.24904577239825»
sub atan2(, = 1e0)method atan2( = 1e0)
The sub should usually be written with two arguments for clarity as it is seen in other languages and in mathematical texts, but the single-argument form is available; its result will always match that of atan.
say atan2 3, 1; # OUTPUT: «1.2490457723982544»say atan2 3; # OUTPUT: «1.2490457723982544»say atan2 ⅔, ⅓; # OUTPUT: «1.1071487177940904»
The method coerces self and its single argument to Numeric, using them to compute the two-argument arc-tangent in radians.
say 3.atan2; # OUTPUT: «1.24904577239825»say ⅔.atan2(⅓); # OUTPUT: «1.1071487177940904»
The $x argument in either the method or the sub defaults to 1 so, in both single-argument cases, the function will return the angle θ in radians between the x-axis and a vector that goes from the origin to the point (3, 1).
sub sec(Numeric(Cool))method sec()
Coerces the invocant (or in sub form, its argument) to Numeric, interprets it as radians, returns its secant, that is, the reciprocal of its cosine.
say 45.sec; # OUTPUT: «1.90359440740442»say sec(45); # OUTPUT: «1.90359440740442»
sub asec(Numeric(Cool))method asec()
Coerces the invocant (or in sub form, its argument) to Numeric, and returns its arc-sine in radians.
say 1.asec; # OUTPUT: «0»say sqrt(2).asec; # OUTPUT: «0.785398163397448»
sub cosec(Numeric(Cool))method cosec()
Coerces the invocant (or in sub form, its argument) to Numeric, interprets it as radians, returns its secant, that is, the reciprocal of its sine.
say 0.45.cosec; # OUTPUT: «2.29903273150897»say cosec(0.45); # OUTPUT: «2.29903273150897»
sub acosec(Numeric(Cool))method acosec()
Coerces the invocant (or in sub form, its argument) to Numeric, and returns its arc-sine in radians.
say 45.acosec; # OUTPUT: «0.0222240516182672»say acosec(45) # OUTPUT: «0.0222240516182672»
sub cotan(Numeric(Cool))method cotan()
Coerces the invocant (or in sub form, its argument) to Numeric, interprets it as radians, returns its secant, that is, the reciprocal of its tangent.
say 45.cotan; # OUTPUT: «0.617369623783555»say cotan(45); # OUTPUT: «0.617369623783555»
sub acotan(Numeric(Cool))method acotan()
Coerces the invocant (or in sub form, its argument) to Numeric, and returns its arc-sine in radians.
say 45.acotan; # OUTPUT: «0.0222185653267191»say acotan(45) # OUTPUT: «0.0222185653267191»
sub sinh(Numeric(Cool))method sinh()
Coerces the invocant (or in method form, its argument) to Numeric, and returns its Sine hyperbolicus.
say 1.sinh; # OUTPUT: «1.1752011936438»say sinh(1); # OUTPUT: «1.1752011936438»
sub asinh(Numeric(Cool))method asinh()
Coerces the invocant (or in sub form, its argument) to Numeric, and returns its Inverse Sine hyperbolicus.
say 1.asinh; # OUTPUT: «0.881373587019543»say asinh(1); # OUTPUT: «0.881373587019543»
sub cosh(Numeric(Cool))method cosh()
Coerces the invocant (or in sub form, its argument) to Numeric, and returns its Sine hyperbolicus.
say cosh(0.5); # OUTPUT: «1.12762596520638»
sub acosh(Numeric(Cool))method acosh()
Coerces the invocant (or in sub form, its argument) to Numeric, and returns its Inverse Sine hyperbolicus.
say acosh(45); # OUTPUT: «4.4996861906715»
sub tanh(Numeric(Cool))method tanh()
Coerces the invocant (or in sub form, its argument) to Numeric, interprets it as radians and returns its Sine hyperbolicus.
say tanh(0.5); # OUTPUT: «0.46211715726001»say tanh(atanh(0.5)); # OUTPUT: «0.5»
sub atanh(Numeric(Cool))method atanh()
Coerces the invocant (or in sub form, its argument) to Numeric, and returns its Inverse Sine hyperbolicus.
say atanh(0.5); # OUTPUT: «0.549306144334055»
sub sech(Numeric(Cool))method sech()
Coerces the invocant (or in sub form, its argument) to Numeric, and returns its Sine hyperbolicus.
say 0.sech; # OUTPUT: «1»
sub asech(Numeric(Cool))method asech()
Coerces the invocant (or in sub form, its argument) to Numeric, and returns its Sine hyperbolicus.
say 0.8.asech; # OUTPUT: «0.693147180559945»
sub cosech(Numeric(Cool))method cosech()
Coerces the invocant (or in sub form, its argument) to Numeric, and returns its Sine hyperbolicus.
say cosech(pi/2); # OUTPUT: «0.434537208094696»
sub acosech(Numeric(Cool))method acosech()
Coerces the invocant (or in sub form, its argument) to Numeric, and returns its Inverse Sine hyperbolicus.
say acosech(4.5); # OUTPUT: «0.220432720979802»
sub cotanh(Numeric(Cool))method cotanh()
Coerces the invocant (or in sub form, its argument) to Numeric, and returns its Sine hyperbolicus.
say cotanh(pi); # OUTPUT: «1.00374187319732»
sub acotanh(Numeric(Cool))method acotanh()
Coerces the invocant (or in sub form, its argument) to Numeric, and returns its Inverse Sine hyperbolicus.
say acotanh(2.5); # OUTPUT: «0.423648930193602»
sub cis(Numeric(Cool))method cis()
Coerces the invocant (or in sub form, its argument) to Numeric, and returns cos(argument) + i*sin(argument).
say cis(pi/4); # OUTPUT: «0.707106781186548+0.707106781186547i»
multi sub log(Numeric(Cool) , Numeric(Cool) ?)multi method log(Cool: Cool ?)
Coerces the arguments (including the invocant in the method form) to Numeric, and returns its Logarithm to base $base
, or to base e
(Euler's Number) if no base was supplied (Natural logarithm). Returns NaN
if $base
is negative. Throws an exception if $base
is 1
.
say (e*e).log; # OUTPUT: «2»
multi method log10()multi sub log10(Numeric )multi sub log10(Cool )
Coerces the invocant (or in the sub form, the argument) to Numeric (or uses it directly if it's already in that form), and returns its Logarithm in base 10, that is, a number that approximately produces the original number when 10 is raised to its power. Returns NaN
for negative arguments and -Inf
for 0
.
say log10(1001); # OUTPUT: «3.00043407747932»
multi method log2()multi sub log2(Numeric )multi sub log2(Cool )
Coerces the invocant to Numeric, and returns its Logarithm in base 2, that is, a number that approximately (due to computer precision limitations) produces the original number when 2 is raised to its power. Returns NaN
for negative arguments and -Inf
for 0
.
say log2(5); # OUTPUT: «2.321928094887362»say "4".log2; # OUTPUT: «2»say 4.log2; # OUTPUT: «2»
multi sub exp(Cool , Cool ?)multi method exp(Cool: Cool ?)
Coerces the arguments (including the invocant in the method from) to Numeric, and returns $base
raised to the power of the first number. If no $base
is supplied, e
(Euler's Number) is used.
say 0.exp; # OUTPUT: «1»say 1.exp; # OUTPUT: «2.71828182845905»say 10.exp; # OUTPUT: «22026.4657948067»
method unpolar(Numeric(Cool))
Coerces the arguments (including the invocant in the method form) to Numeric, and returns a complex number from the given polar coordinates. The invocant (or the first argument in sub form) is the magnitude while the argument (i.e. the second argument in sub form) is the angle. The angle is assumed to be in radians.
say sqrt(2).unpolar(pi/4); # OUTPUT: «1+1i»
multi sub round(Numeric(Cool), = 1)multi method round(Cool: = 1)
Coerces the invocant (or in sub form, its argument) to Numeric, and rounds it to the unit of $scale
. If $scale
is 1, rounds to the nearest integer; an arbitrary scale will result in the closest multiple of that number.
say 1.7.round; # OUTPUT: «2»say 1.07.round(0.1); # OUTPUT: «1.1»say 21.round(10); # OUTPUT: «20»say round(1000, 23.01) # OUTPUT: «989.43»
Always rounds up if the number is at mid-point:
say (−.5 ).round; # OUTPUT: «0»say ( .5 ).round; # OUTPUT: «1»say (−.55).round(.1); # OUTPUT: «-0.5»say ( .55).round(.1); # OUTPUT: «0.6»
Pay attention to types when using this method, as ending up with the wrong type may affect the precision you seek to achieve. For Numeric types, the type of the result is the type of the argument (Complex argument gets coerced to Numeric, ending up a Num). If rounding a Complex, the result is Complex as well, regardless of the type of the argument.
9930972392403501.round(1) .raku.say; # OUTPUT: «9930972392403501»9930972392403501.round(1e0) .raku.say; # OUTPUT: «9.9309723924035e+15»9930972392403501.round(1e0).Int.raku.say; # OUTPUT: «9930972392403500»
multi sub floor(Numeric(Cool))multi method floor
Coerces the invocant (or in sub form, its argument) to Numeric, and rounds it downwards to the nearest integer.
say "1.99".floor; # OUTPUT: «1»say "-1.9".floor; # OUTPUT: «-2»say 0.floor; # OUTPUT: «0»
method fmt( = '%s')
Uses $format
to return a formatted representation of the invocant; equivalent to calling sprintf with $format
as format and the invocant as the second argument. The $format
will be coerced to Stringy and defaults to '%s'
.
For more information about formats strings, see sprintf.
say 11.fmt('This Int equals %03d'); # OUTPUT: «This Int equals 011»say '16'.fmt('Hexadecimal %x'); # OUTPUT: «Hexadecimal 10»
multi sub ceiling(Numeric(Cool))multi method ceiling
Coerces the invocant (or in sub form, its argument) to Numeric, and rounds it upwards to the nearest integer.
say "1".ceiling; # OUTPUT: «1»say "-0.9".ceiling; # OUTPUT: «0»say "42.1".ceiling; # OUTPUT: «43»
multi sub truncate(Numeric(Cool))multi method truncate()
Coerces the invocant (or in sub form, its argument) to Numeric, and rounds it towards zero.
say 1.2.truncate; # OUTPUT: «1»say truncate -1.2; # OUTPUT: «-1»
sub ord(Str(Cool))method ord()
Coerces the invocant (or in sub form, its argument) to Str, and returns the Unicode code point number of the first code point.
say 'a'.ord; # OUTPUT: «97»
The inverse operation is chr.
Mnemonic: returns an ordinal number
method path(Cool: --> IO::Path)
DEPRECATED. It's been deprecated as of the 6.d version. Will be removed in the next ones.
Stringifies the invocant and converts it to IO::Path object. Use the .IO method
instead.
sub chr(Int(Cool))method chr()
Coerces the invocant (or in sub form, its argument) to Int, interprets it as a Unicode code point, and returns a Str made of that code point.
say '65'.chr; # OUTPUT: «A»
The inverse operation is ord.
Mnemonic: turns an integer into a character.
multi sub chars(Cool )multi sub chars(Str )multi sub chars(str --> int)method chars(--> Int)
Coerces the invocant (or in sub form, its argument) to Str, and returns the number of characters in the string. Please note that on the JVM, you currently get codepoints instead of graphemes.
say 'møp'.chars; # OUTPUT: «3»say 'ã̷̠̬̊'.chars; # OUTPUT: «1»say '👨👩👧👦🏿'.chars; # OUTPUT: «1»
If the string is native, the number of chars will be also returned as a native int
.
Graphemes are user visible characters. That is, this is what the user thinks of as a “character”.
Graphemes can contain more than one codepoint. Typically the number of graphemes and codepoints differs when Prepend
or Extend
characters are involved (also known as Combining characters), but there are many other cases when this may happen. Another example is \c[ZWJ]
(Zero-width joiner).
You can check Grapheme_Cluster_Break
property of a character in order to see how it is going to behave:
say ‘ã̷̠̬̊’.uniprops(‘Grapheme_Cluster_Break’); # OUTPUT: «(Other Extend Extend Extend Extend)»say ‘👨👩👧👦🏿’.uniprops(‘Grapheme_Cluster_Break’); # OUTPUT: «(E_Base_GAZ ZWJ E_Base_GAZ ZWJ E_Base_GAZ ZWJ E_Base_GAZ E_Modifier)»
You can read more about graphemes in the Unicode Standard, which Raku tightly follows, using a method called NFG, normal form graphemes for efficiently representing them.
sub codes(Str(Cool))method codes()
Coerces the invocant (or in sub form, its argument) to Str, and returns the number of Unicode code point.
say 'møp'.codes; # OUTPUT: «3»
The same result will be obtained with
say +'møp'.ords; # OUTPUT: «3»
ords first obtains the actual codepoints, so there might be a difference in speed.
sub flip(Cool --> Str)method flip()
Coerces the invocant (or in sub form, its argument) to Str, and returns a reversed version.
say 421.flip; # OUTPUT: «124»
sub trim(Str(Cool))method trim()
Coerces the invocant (or in sub form, its argument) to Str, and returns the string with both leading and trailing whitespace stripped.
my = ' abc '.trim;say "<$stripped>"; # OUTPUT: «<abc>»
sub trim-leading(Str(Cool))method trim-leading()
Coerces the invocant (or in sub form, its argument) to Str, and returns the string with leading whitespace stripped.
my = ' abc '.trim-leading;say "<$stripped>"; # OUTPUT: «<abc >»
sub trim-trailing(Str(Cool))method trim-trailing()
Coerces the invocant (or in sub form, its argument) to Str, and returns the string with trailing whitespace stripped.
my = ' abc '.trim-trailing;say "<$stripped>"; # OUTPUT: «< abc>»
sub lc(Str(Cool))method lc()
Coerces the invocant (or in sub form, its argument) to Str, and returns it case-folded to lower case.
say "ABC".lc; # OUTPUT: «abc»
sub uc(Str(Cool))method uc()
Coerces the invocant (or in sub form, its argument) to Str, and returns it case-folded to upper case (capital letters).
say "Abc".uc; # OUTPUT: «ABC»
sub fc(Str(Cool))method fc()
Coerces the invocant (or in sub form, its argument) to Str, and returns the result a Unicode "case fold" operation suitable for doing caseless string comparisons. (In general, the returned string is unlikely to be useful for any purpose other than comparison.)
say "groß".fc; # OUTPUT: «gross»
sub tc(Str(Cool))method tc()
Coerces the invocant (or in sub form, its argument) to Str, and returns it with the first letter case-folded to title case (or where not available, upper case).
say "abC".tc; # OUTPUT: «AbC»
sub tclc(Str(Cool))method tclc()
Coerces the invocant (or in sub form, its argument) to Str, and returns it with the first letter case-folded to title case (or where not available, upper case), and the rest of the string case-folded to lower case.
say 'abC'.tclc; # OUTPUT: «Abc»
sub wordcase(Str(Cool) , : = , Mu : = True)method wordcase(: = , Mu : = True)
Coerces the invocant (or in sub form, the first argument) to Str, and filters each word that smartmatches against $where
through the &filter
. With the default filter (first character to upper case, rest to lower) and matcher (which accepts everything), this title-cases each word:
say "raku programming".wordcase; # OUTPUT: «Raku Programming»
With a matcher:
say "have fun working on raku".wordcase(:where());# Have fun Working on Raku
With a customer filter too:
say "have fun working on raku".wordcase(:filter(), :where());# HAVE fun WORKING on RAKU
sub samecase(Cool , Cool )method samecase(Cool: Cool )
Coerces the invocant (or in sub form, the first argument) to Str, and calls Str.samecase
on it.
say "raKu".samecase("A_a_"); # OUTPUT: «Raku»say "rAKU".samecase("Ab"); # OUTPUT: «Raku»
multi sub uniprop(Str, |c)multi sub uniprop(Int )multi sub uniprop(Int , Stringy )multi method uniprop(|c)
Returns the unicode property of the first character. If no property is specified returns the General Category. Returns a Bool for Boolean properties. A uniprops routine can be used to get the property for every character in a string.
say 'a'.uniprop; # OUTPUT: «Ll»say '1'.uniprop; # OUTPUT: «Nd»say 'a'.uniprop('Alphabetic'); # OUTPUT: «True»say '1'.uniprop('Alphabetic'); # OUTPUT: «False»
sub uniprops(Str , Stringy = "General_Category")
Interprets the invocant as a Str, and returns the unicode property for each character as a Seq. If no property is specified returns the General Category. Returns a Bool for Boolean properties. Similar to uniprop, but for each character in the passed string.
sub uniname(Str(Cool) --> Str)method uniname(--> Str)
Interprets the invocant or first argument as a Str, and returns the Unicode codepoint name of the first codepoint of the first character. See uninames for a routine that works with multiple codepoints, and uniparse for the opposite direction.
# Camelia in Unicodesay ‘»ö«’.uniname;# OUTPUT: «RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK»say "Ḍ̇".uniname; # Note, doesn't show "COMBINING DOT ABOVE"# OUTPUT: «LATIN CAPITAL LETTER D WITH DOT BELOW»# Find the char with the longest Unicode name.say (0..0x1FFFF).sort(*.uniname.chars)[].chr.uniname;# OUTPUT: «BOX DRAWINGS LIGHT DIAGONAL UPPER CENTRE TO MIDDLE RIGHT AND MIDDLE LEFT TO LOWER CENTRE»
sub uninames(Str)method uninames()
Returns of a Seq of Unicode names for the all the codepoints in the Str provided.
say ‘»ö«’.uninames.raku;# OUTPUT: «("RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK", "LATIN SMALL LETTER O WITH DIAERESIS", "LEFT-POINTING DOUBLE ANGLE QUOTATION MARK").Seq»
Note this example, which gets a Seq where each element is a Seq of all the codepoints in that character.
say "Ḍ̇'oh".comb>>.uninames.raku;# OUTPUT: «(("LATIN CAPITAL LETTER D WITH DOT BELOW", "COMBINING DOT ABOVE").Seq, ("APOSTROPHE",).Seq, ("LATIN SMALL LETTER O",).Seq, ("LATIN SMALL LETTER H",).Seq)»
See uniparse for the opposite direction.
multi sub unimatch(Str , |c)multi sub unimatch(Int , Stringy , Stringy = )
Checks if the given integer codepoint or the first letter of the given string has a unicode property equal to the value you give. If you supply the Unicode property to be checked it will only return True if that property matches the given value.
say unimatch 'A', 'Latin'; # OUTPUT: «True»say unimatch 'A', 'Latin', 'Script'; # OUTPUT: «True»say unimatch 'A', 'Ll'; # OUTPUT: «False»
The last property corresponds to "lowercase letter", which explains why it returns false.
sub chop(Str(Cool))method chop()
Coerces the invocant (or in sub form, its argument) to Str, and returns it with the last character removed.
say 'raku'.chop; # OUTPUT: «rak»
sub chomp(Str(Cool))method chomp()
Coerces the invocant (or in sub form, its argument) to Str, and returns it with the last character removed, if it is a logical newline.
say 'ab'.chomp.chars; # OUTPUT: «2»say "a\n".chomp.chars; # OUTPUT: «1»
sub substr(Str(Cool) , |c)method substr(|c)
Coerces the invocant (or in the sub form, the first argument) to Str, and calls Str.substr with the arguments.
multi method substr-rw(|) is rwmulti sub substr-rw(|) is rw
Coerces the invocant (or in the sub form, the first argument) to Str, and calls Str.substr-rw with the arguments.
sub ords(Str(Cool) )method ords()
Coerces the invocant (or in the sub form, the first argument) to Str, and returns a list of Unicode codepoints for each character.
say "Camelia".ords; # OUTPUT: «67 97 109 101 108 105 97»say ords 10; # OUTPUT: «49 48»
This is the list-returning version of ord. The inverse operation in chrs. If you are only interested in the number of codepoints, codes is a possibly faster option.
sub chrs(* --> Str)method chrs()
Coerces the invocant (or in the sub form, the argument list) to a list of integers, and returns the string created by interpreting each integer as a Unicode codepoint, and joining the characters.
say <67 97 109 101 108 105 97>.chrs; # OUTPUT: «Camelia»
This is the list-input version of chr. The inverse operation is ords.
multi sub split( Str , Str(Cool) , = Inf, :, :, :, :, :)multi sub split(Regex , Str(Cool) , = Inf, :, :, :, :, :)multi sub split(, Str(Cool) , = Inf, :, :, :, :, :)multi method split( Str , = Inf, :, :, :, :, :)multi method split(Regex , = Inf, :, :, :, :, :)multi method split(, = Inf, :, :, :, :, :)
Coerces the invocant (or in the sub form, the second argument) to Str, splits it into pieces based on delimiters found in the string and returns the result as a Seq.
If $delimiter
is a string, it is searched for literally and not treated as a regex. You can also provide multiple delimiters by specifying them as a list, which can mix Cool
and Regex
objects.
say split(';', "a;b;c").raku; # OUTPUT: «("a", "b", "c").Seq»say split(';', "a;b;c", 2).raku; # OUTPUT: «("a", "b;c").Seq»say split(';', "a;b;c,d").raku; # OUTPUT: «("a", "b", "c,d").Seq»say split(/\;/, "a;b;c,d").raku; # OUTPUT: «("a", "b", "c,d").Seq»say split(//, "a;b;c,d").raku; # OUTPUT: «("a", "b", "c", "d").Seq»say split(['a', /b+/, 4], '1a2bb345').raku; # OUTPUT: «("1", "2", "3", "5").Seq»
By default, split
omits the matches, and returns a list of only those parts of the string that did not match. Specifying one of the :k, :v, :kv, :p
adverbs changes that. Think of the matches as a list that is interleaved with the non-matching parts.
The :v
interleaves the values of that list, which will be either Match objects, if a Regex was used as a matcher in the split, or Str objects, if a Cool was used as matcher. If multiple delimiters are specified, Match objects will be generated for all of them, unless all of the delimiters are Cool.
say 'abc'.split(/b/, :v); # OUTPUT: «(a 「b」 c)»say 'abc'.split('b', :v); # OUTPUT: «(a b c)»
:k
interleaves the keys, that is, the indexes:
say 'abc'.split(/b/, :k); # OUTPUT: «(a 0 c)»
:kv
adds both indexes and matches:
say 'abc'.split(/b/, :kv); # OUTPUT: «(a 0 「b」 c)»
and :p
adds them as Pairs, using the same types for values as :v
does:
say 'abc'.split(/b/, :p); # OUTPUT: «(a 0 => 「b」 c)»say 'abc'.split('b', :p); # OUTPUT: «(a 0 => b c)»
You can only use one of the :k, :v, :kv, :p
adverbs in a single call to split
.
Note that empty chunks are not removed from the result list. For that behavior, use the :skip-empty
named argument:
say ("f,,b,c,d".split: /","/ ).raku; # OUTPUT: «("f", "", "b", "c", "d").Seq»say ("f,,b,c,d".split: /","/, :skip-empty).raku; # OUTPUT: «("f", "b", "c", "d").Seq»
sub lines(Str(Cool))method lines()
Coerces the invocant (and in sub form, the argument) to Str, decomposes it into lines (with the newline characters stripped), and returns the list of lines.
say lines("a\nb\n").join('|'); # OUTPUT: «a|b»say "some\nmore\nlines".lines.elems; # OUTPUT: «3»
This method can be used as part of an IO::Path to process a file line-by-line, since IO::Path
objects inherit from Cool
, e.g.:
for 'huge-csv'.IO.lines -># or if you'll be processing latermy = 'huge-csv'.IO.lines;
Without any arguments, sub lines
operates on $*ARGFILES
.
To modify values in place use is copy
to force a writable container.
for .lines -> is copy
method words(Cool: |c)
Coerces the invocant (or first argument, if it is called as a subroutine) to Str, and returns a list of words that make up the string. Check Str.words
for additional arguments and its meaning.
say <The quick brown fox>.words.join('|'); # OUTPUT: «The|quick|brown|fox»say <The quick brown fox>.words(2).join('|'); # OUTPUT: «The|quick»
Cool
is the base class for many other classes, and some of them, like Match, can be converted to a string. This is what happens in this case:
say ( "easy come, easy goes" ~~ m:g/(ea\w+)/).words(Inf);# OUTPUT: «(easy easy)»say words( "easy come, easy goes" ~~ m:g/(ea\w+)/ , ∞);# OUTPUT: «(easy easy)»
The example above illustrates two of the ways words
can be invoked, with the first argument turned into invocant by its signature. Inf
is the default value of the second argument, so in both cases (and forms) it can be simply omitted.
Only whitespace (including no-break space) counts as word boundaries
say <Flying on a Boeing 747>.words.join('|'); # OUTPUT: «Flying|on|a|Boeing|747»
In this case, "Boeing 747" includes a (visible only in the source) no-break space; words
still splits the (resulting) Str
on it, even if the original array only had 4 elements:
say <Flying on a Boeing 747>.join('|'); # OUTPUT: «Flying|on|a|Boeing 747»
Please see Str.words
for more examples and ways to invoke it.
multi sub comb(Regex , Cool , = *)multi sub comb(Str , Cool , = *)multi sub comb(Int , Cool , = *)multi method comb(|c)
Returns a Seq of all (or if supplied, at most $limit
) matches of the invocant (method form) or the second argument (sub form) against the Regex, string or defined number.
say "6 or 12".comb(/\d+/).join(", "); # OUTPUT: «6, 12»say comb(/\d /,(11..30)).join("--");# OUTPUT:# «11--12--13--14--15--16--17--18--19--21--22--23--24--25--26--27--28--29»
The second statement exemplifies the first form of comb
, with a Regex
that excludes multiples of ten, and a Range
(which is Cool
) as $input
. comb
stringifies the Range
before applying .comb
on the resulting string. Check Str.comb
for its effect on different kind of input strings. When the first argument is an integer, it indicates the (maximum) size of the chunks the input is going to be divided in
say comb(3,[3,33,333,3333]).join("*"); # OUTPUT: «3 3*3 3*33 *333*3»
In this case the input is a list, which after transformation to Str
(which includes the spaces) is divided in chunks of size 3.
method contains(Cool: |c)
Coerces the invocant to a Str, and calls Str.contains
on it. Please refer to that version of the method for arguments and general syntax.
say 123.contains("2")# OUTPUT: «True»
Since Int is a subclass of Cool
, 123
is coerced to a Str
and then contains
is called on it.
say (1,1, * + * … * > 250).contains(233)# OUTPUT: «True»
Seqs are also subclasses of Cool
, and they are stringified to a comma-separated form. In this case we are also using an Int
, which is going to be stringified also; "233"
is included in that sequence, so it returns True
. Please note that this sequence is not lazy; the stringification of lazy sequences does not include each and every one of their components for obvious reasons.
multi sub index(Cool , Cool , :i(:), :m(:) --> Int)multi sub index(Cool , Cool , Cool , :i(:), :m(:) --> Int)multi method index(Cool: Cool --> Int)multi method index(Cool: Cool , :m(:)! --> Int)multi method index(Cool: Cool , :i(:)!, :m(:) --> Int)multi method index(Cool: Cool , Cool --> Int)multi method index(Cool: Cool , Cool , :m(:)! --> Int)multi method index(Cool: Cool , Cool , :i(:)!, :m(:) --> Int)
Coerces the first two arguments (in method form, also counting the invocant) to a Str, and searches for $needle
in the string $s
starting from $pos
. It returns the offset into the string where $needle
was found, and Nil
if it was not found.
See the documentation in type Str for examples.
multi sub rindex(Cool , Cool --> Int)multi sub rindex(Cool , Cool , Cool --> Int)multi method rindex(Cool: Cool --> Int)multi method rindex(Cool: Cool , Cool --> Int)
Coerces the first two arguments (including the invocant in method form) to Str and $pos
to Int, and returns the last position of $needle
in the string not after $pos
. Returns Nil
if $needle
wasn't found.
See the documentation in type Str for examples.
method match(Cool: , *)
Coerces the invocant to Stringy and calls the method match on it.
multi sub roots(Numeric(Cool) , Int(Cool) )multi method roots(Int(Cool) )
Coerces the first argument (and in method form, the invocant) to Numeric and the second ($n
) to Int, and produces a list of $n
Complex $n
-roots, which means numbers that, raised to the $n
th power, approximately produce the original number.
For example
my = 16;my = .roots(4);say ;for -># OUTPUT:«2+0i 1.22464679914735e-16+2i -2+2.44929359829471e-16i -3.67394039744206e-16-2i»# OUTPUT:«1.77635683940025e-15»# OUTPUT:«4.30267170434156e-15»# OUTPUT:«8.03651692704705e-15»# OUTPUT:«1.04441561648202e-14»
method subst(|)
Coerces the invocant to Stringy and calls Str.subst.
method trans(|)
Coerces the invocant to Str and calls Str.trans
method IO(--> IO::Path)
Coerces the invocant to IO::Path.
.say for '.'.IO.dir; # gives a directory listing
method sprintf(*)
Returns a string according to a series format directives that are common in many languages; the object will be the format string, while the supplied arguments will be what's going to be formatted according to it.
"% 6s".sprintf('Þor').say; # OUTPUT: « Þor»
method printf(*)
Uses the object, as long as it is a format directives, to format and print the arguments
"%.8f".printf(now - now ); # OUTPUT: «-0.00004118»
multi method Complex()
Coerces the invocant to a Numeric and calls its .Complex
method. Fails if the coercion to a Numeric
cannot be done.
say 1+1i.Complex; # OUTPUT: «1+1i»say π.Complex; # OUTPUT: «3.141592653589793+0i»say <1.3>.Complex; # OUTPUT: «1.3+0i»say (-4/3).Complex; # OUTPUT: «-1.3333333333333333+0i»say "foo".Complex.^name; # OUTPUT: «Failure»
multi method FatRat()
Coerces the invocant to a Numeric and calls its .FatRat
method. Fails if the coercion to a Numeric
cannot be done.
say 1+0i.FatRat; # OUTPUT: «1»say 2e1.FatRat; # OUTPUT: «20»say 1.3.FatRat; # OUTPUT: «1.3»say (-4/3).FatRat; # OUTPUT: «-1.333333»say "foo".FatRat.^name; # OUTPUT: «Failure»
multi method Int()
Coerces the invocant to a Numeric and calls its .Int
method. Fails if the coercion to a Numeric
cannot be done.
say 1+0i.Int; # OUTPUT: «1»say <2e1>.Int; # OUTPUT: «20»say 1.3.Int; # OUTPUT: «1»say (-4/3).Int; # OUTPUT: «-1»say "foo".Int.^name; # OUTPUT: «Failure»
multi method Num()
Coerces the invocant to a Numeric and calls its .Num
method. Fails if the coercion to a Numeric
cannot be done.
say 1+0i.Num; # OUTPUT: «1»say 2e1.Num; # OUTPUT: «20»say (16/9)².Num; # OUTPUT: «3.1604938271604937»say (-4/3).Num; # OUTPUT: «-1.3333333333333333»say "foo".Num.^name; # OUTPUT: «Failure»
multi method Rat()
Coerces the invocant to a Numeric and calls its .Rat
method. Fails if the coercion to a Numeric
cannot be done.
say 1+0i.Rat; # OUTPUT: «1»say 2e1.Rat; # OUTPUT: «20»say (-4/3).Rat; # OUTPUT: «-1.333333»say "foo".Rat.^name; # OUTPUT: «Failure»say (.numerator, .denominator) for π.Rat; # OUTPUT: «(355 113)»
multi method Real()
Coerces the invocant to a Numeric and calls its .Real
method. Fails if the coercion to a Numeric
cannot be done.
say 1+0i.Real; # OUTPUT: «1»say 2e1.Real; # OUTPUT: «20»say 1.3.Real; # OUTPUT: «1.3»say (-4/3).Real; # OUTPUT: «-1.333333»say "foo".Real.^name; # OUTPUT: «Failure»
multi method UInt()
Coerces the invocant to an Int. Fails if the coercion to an Int
cannot be done or if the Int
the invocant had been coerced to is negative.
say 1+0i.UInt; # OUTPUT: «1»say 2e1.UInt; # OUTPUT: «20»say 1.3.UInt; # OUTPUT: «1»say (-4/3).UInt.^name; # OUTPUT: «Failure»say "foo".UInt.^name; # OUTPUT: «Failure»